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1.0 INTRODUCTION

This paper proposes a simplified "double-pricing" method for solving
the capacitated transpartation problem by Lemke's dual elgorithm [25] and
shows how to streamline this algorithm for computer implementation. We
also provide an efficient method for obtaining a dual feasible starting
basis that exhibits certain advantages over counterpart methods that have
been proposed for obtaining a primal feasible basis. These methods can
be applied tc network models by using the technique in Wagner [35, page 173)
to transform the network into a distribution problem. 1In addition, the
results of computational comparison of a code based on these developments
with two widely used out-of-kilter production codes is provided. These
codes are also compared against a state of the art LP code, OPHELIE/LP.

Specialized methods for solving the transportation problem with the
primal simplex algorithm snd with related "dual" or "primal-dual" network
algorithms have been the focus of a great deal of ingenuity and effort
(see, e.g. [2,3,6,7,9,11,13,14]). A method for exploiting the topological
structure of the transportation problem in a dual context was first proposed
by Balas and Ivanescu [2,3], and later simplified and shown to constitute
a specialization of the dual method by Charnes and Kirby [7]. The key
to effecting the simplifications of Charnes and Kirby lay in the use of
the Charnes and Cooper "poly-g" procedure [€] for linear programming.

The motivation cited for the dual methods of [2,3,7] was the suppocition
that the problem's "supplies” and "demands" may not be permanently fixed
but subject to change. In such a situation, it ies useful to have the
ability to begin from an optimal basis to a gi'.en problem and proceed via
the dual method to an optimal sclution for a yproblem with altered shipment
reguirements.

However, to our knowledge, no efficient procedure has appeared in the
literature for obtaining an initial dual feasible basis for a problem that
has not previously been solved under a stated set of shipment requirements.
Moreover, the dual methods of [2,3,7] make no provision for accomodating
Lie capacitated transportation problem, in which the variasbles are constrained
to lie within stated bounds. To handle these more general considerations,
the standard procedure has been to resort to tie "out-of-kilter" methods



which, though admirably efficient for general networks, were not origin-
ally designed to exploit the special topological properties of the trans-
portation network. Recently, however, Graves and Thrall [32, p. 272] have
specialized the out-of-kilter algorithm for the special properties of trans-
portation networks.

In this paper we present a dual method based on those of [2,3,7] that
operates directly on the transportation network, and which accomodates the
fully capacitated problem (with finite and/or infinite upper and lower
boundg). Our approach implicitly relies on the "poly-y" procedure in a
manner analogous to that indicated by Charnes and Kirby for the uncapacitated
case, but our development for the general capacitated problem is completely
straightforward and requires no reference to "poly-y" methods for its
justification. By coupling this specialization of the "poly-uw" procedure
with the predecessor and augmented predecessor index methods [18,19) for
accelerating the determination of basis trees and dual evaluators a stream-
lined computer implementation is achieved.

We also specify a method that gives a dual feasible starting basis.
Our "dual start” method requires an amount of computation somewhere between that of
the "northwest cormer"” and "VAM" methods commonly used to obtain primal
feasible starts. An important feature of our methcd, however, is its
automatic avoidance of a starting basis containing "inadmissible" cells.

As we show in Section 5, the "northwesti corner” and "VAM" procedures may
actual.y select such cells to be in a2 starting basis. Thus the basic solu-
tions provided by these methods may well be "primal feasible” only in an
arti-icial sense. The basic solutions provided by our method, however, are
dnal feasible without qualification. [A dual feasible basis may legiti-
mately contain cells whose variables are constrained to zero, and hence
"inadmissible"” cells, but our method effectively bypasses them.] Because
large scale transportation problems encountered in an industrial setting
are typically guite sparse (i.e., contain a large number of inadmissible
cells), the computational study in Section € examines the effect of
problem density on solution time. [Density is equal to the number of arcs
in the problem divided by the number of total possible arecs.)



2.0 NOTATION AND PROELEM STATEMENT

We write the capacitated transportation problem in the form:

& e 5 (
Minimize Xo = & i:. i 5 (1)
ieM
JeN
subject to L X,. =8, ’ ieM = (1,2,...,n] (2)
jeR =
2 ox,=h, s JeN = {1,2,...,n] (3)
i‘,‘M v <
I’i:; = xij = Uij’ ieM, jeN (%)
where the coefficients 8., bj 9 Lid are finite integers, and Ui,j are integers
(if they are finite valued), and 2 a, = ‘:.J. (Ways for casting a
ieM Jesd

variety of network problemsin this formulation are given in [6,9,30,32,35].)
Following standard terminology, the a, parameters are called "supplies,”
and the bJ' parameters are called "demands.” We associate these supplies
and demands, respectively, with the rows and columns of an mxn transportation
tableau whose cells contain the "cost coefficients” €4
A set of m+n-l cells of the transportation tableau is a basis if each
tavleau row and column contains at least one of tre cells and if no subset of
these cells constitutes a cycle (i.e., has the fomm (il,i 1 (12,. Yaronski ,11)).
4 cell (and its associated variable xij) is called basic if it is conuined
among those cells in the basis and is called nonbasic otherwise.
A basic solution is the unigue assiznment of the values to the x, 3
variables satisfying the eguations /2) and (3) that results once each non-
basic x5 has been set egual to Lij or egual to Ui:j (provided the vaiue of
i1he relevant bound is finite). If such a solution satisfies (i) for all
of the variables, then it is called primal feasible.
Corresponding to a particular basis is a set of "row multipliers” R,
and a set of "column multipliers” K‘ (not unique) such that the "updated
cost coefficient” Tiq0 defined by ﬂij = R + KJ i,j’ is zero for all basic
cells: & basic solution is dual feagible ir in addition ﬂ‘13 = 0 for all
nonbasic variables xij set egual to L Ly and s = 0 for all uonbasic
variables Xy set egual to Uij' (The multipliers B, and Kj on whick the
".ij are based represent values assigned to the variables of the dual of
the transportation problem.) By fundamental linear programming theory,
a basic solution that is both primal and dual feasible is optimal for the

transportation problem.




3.0 THE DOUBLE PRICING ALGORITHM

To lay the foundation for specializing the [emke dual method to the
capacitated iransportation problem, we first review the steps of the dusl
method in & general (bounded variable) minim.zation linear programming
framework. (See Footnote 1.)

1. Begin with a dual feasible solution.

2. GSelect a basic variable (call it yr) that violates either its upper
or lower bound. (If no such variable exists, the current basic solution is
optimal and the method stops.)

3. Determine the unigue "updated” linear eguation which expresses the
selected basic variable - AR as a linear combination of the current nonbasic
variables; i.e., r . Ao + T lk (-yk), where NE denotes the .ndex set
for the current nonbasic es ¥, .

L. Let )"k = 'lk for kekB if Y is set equal to its lower bound and
A violates its lower bound, or if ¥y is set equal to its upper bound
and ;.'r:iolatea its upper bound. +For the remaining ke<NE, let l'k = lk and
let NB = {jeNB: A", > 0}. If NB is empty, then the problem has no primal
feasible solution a:xi the algorithm stops.

5. Identify the unique "updated" eguation that expressed the objective
function variable to be minimized {call it yo) in terms of the current
nonbesic variables; i.e.,

s e
y=a o+ 2 (=5.)
T e Tk

+
6. Identify a nonbasic varisble ¥ s 8€NE , such that
[-mg/2g] = Min , (]-m /o ]}
kelRB

(For keNB , |-nk/1k| = || / LY

7. Determine a new current basic solution by removing s and adding r to
NE (making ¥ basic and ’ nonbasic), and assigning r. the value of the bound
1t previously violatel while holding the other nonbasic variables constant
(identifying the vaiues thus assigned to the new set of current basic variables).
Then return to Instruction 2.

Finiteness of the foregoing method is assured through the use of "perturbation”
or "lexicographic"” schemes (see [5,9]). Such schemes will not be discussed
here.



To refine the general duel method to the capacitated transportation
prodvlem, it is important to note that the "row-column sum {also called the
MODI method [S]) method™ [£,vol. II] for solving the transportation problem
with the primal simplex method can be applied to determine the ™ values
of Instruction 5 (which correspond to the ™ 3 values indicated in the
preceding section), and to effect the "basis exchange” step of Instruction
7. Thus, to complete the specification of the dual method specialized
to ihe transportation problem we reguire a procedure for determining thre )‘k
coefficients introduced in ynstruction 3 (and referred to in Instructions
L and €).

The close resemblance of the goals of determining the "k and ),
coefficients when the dual method is stated as above suggests that the
procedures for achieving these goals should likewise be similar. Indeed,
the so-called "pricing-out” procedure for determining the ™ values for
the transportation protvlex directly extends to a "double pricing-out”
procedure for joint determination of both the T and )‘k values.

In the transportation context, we shall denote the vasic variable v
selected in Instruction 2 by xm, and represent the eguation of instruction
3%y

% ey W lean )
PC el P - 5 Rl

JeN
i3 is Lasic). The justification of the following result
is then immediately apparent from our foregoing remarks.
Lemma:
Let c'pq = 1 and c'i: = 0 for all ieM, jeN, and (4i,3) # (p,9)- 1If R'i
and K'j are row and column multipliers such that c'i: = R'i - K'j for all
vasic xﬁ, then the xi.f values are given by

(where 113 =0 if x

va R K - xT o AEN, JeN.
)-1‘;‘ R i 1‘;’ ? <&

Froof:
From the "row-column sum"” method, the unigue "updated” equation that

expresses the oujective function varisble to be minimized x_ = z
ieM
Jjen

€55%53

\h



2s 2 linear combination of the current nonbasic varisbles is xoo = Too +
% and K. are row and
Jel ;
JeN
coluzn multipliers such that Sie " Ri + K, for all basic x, .-
ot » o

For the costs c' defined above, e b c'i’.xi‘ = x__. Conseguently,

n..(-x..) vhere nn,_. =R, + K, = c._, ieM, N ard R
i ij ij i J ij i

-
JeR
w ok W olae sl ¢80 o)
00 feM ij i 00 jeM 1J ij
jeN jeX
where ﬂ'i: = R'i + K';'. - c'ij’ icM, jeN, and R'i + K'j - c'ij = 0 for all
basic xﬁ. Thus,

li:v - R'i + K'ﬁ - c'i:" 1“’ :‘.No

As intimated earlier, this result constitutes a specialization of the
Charnes poly-w procedure. A thorough discussion of the poly-g procedure in
& general settins; is unnecessary to see the validity of the result in the
present application and will, therefore, be cmitted. (See[5,7].)

It is also clear that the "row-column sum" rules for determining the F‘i
and Kj multipliers (that yield the "i:j) can be applied to determine the R'i
and i:'j multipliers and the Ri and K 3 multipliers simultaneously. Moreover,
the topological structure of the transportation problem, namely the triangularity
property of a basis, permits the conclusion that )‘ié = =1, 0, or 1 for all icM,
JeN.

Also, using only the basis information the )\i P values can e easil deter-
mined with a minimum amount of work, thus alleviating the need to update the
li;‘ values from iteration to iteration. Further the augmented predecessor
index method [1¢] provides a concise and efficient list structure for finding
the R'i and K'j multipliers. The computer implementation of this algorithm
thus uses this list structure. Unfortunately, even with all these simplifi-
cations a great deal of the total computational time is spent determining
the )‘ij values and the s values used to find the next pivot. This is due
1o the large number of these values to be found per pivoi: for instance,
if the problem has 10,000 variables then 10,000 115 values must be determined

on each iteration.



4.0 COMPLETED SPECIALIZATION

To bring our foregoing comments together and make them specific, we now
indicate the full specialization of the dual method of Section 3 to the capa-
citated transportation problem in the following detailed set of instructions:

1. Begin with a dual feasible basic solution, denoted by xi" = r.ij'
(Section 5 presents an algorithm for obtaining such a solution.)

2. Select a basic variable x _ such that x* >U orx* <1 . (If

P pQ poct ot rc
no such variable exists, the solution xij = x*ij for ic<M, jeN is optimal and
the method stops.)

3. Determine the gf,. and ki values simultaneously by the following rules

ij
for calculating the multipliers Ri’ R' 52 KJ and K'J To atart, let Rp = R'p = 0,
Kq ke K'q = 1 and create the sets P = {p) and Q = {g]. In general, if there

exists & basic variabdle xl‘ such that icP and jeN-Q, then let K = cii - Ri’
£'. = «-R' 52 and let Q = Q U {j). Similarly, if there exists a basic variable

- - é - + = Ly L] = ¥ % 2
x. . such that jcQ and ieM-P, then le Ri cij X., R i 53 and let

P =P U {i]. Repeat the foregoing until P = N and Q = M and determine the

values ™= Ri - K - cl_ and Xii = R'i - K'j - c'ii for all ic<M, jeN where
c's; =0, ieM, jeN, and (1,;) # (p,g) and c'pq = 1. [The s values will

o
initially oe known from the algorithm of Section 5 for obtaining a basic

dual feasible start and therefore need not ve calculated on the first

iteration of this step.]
L. Let 5 be a "flag" set which is equal to -1 if x*pq < qu and which

is set equal to +1 if .pq pq Then let NE be the set of cells (i,] ) such

that either A = 5 and x*lJ =L, 137 or li =-5and x*,, = Uiu (1f N2 is

emptry, the trnnsportation problem has no feasible aolutlov and the algorithm

stops.)
%« Identify & nonbasgic variable X (u,v) € NB+, such that
jm | = Min {|nm, . |-
W Y
£. Determine the unigue cycle created by adding the cell (u,v) to the

cells of the basis (e.g., using the predecessor index method of [18]). Let
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9 =1 - x* if x* < L and otherwise, let ¢ = U__ - x*_ .
Pq Pq Pq Pq Pq Pq

cell (p,q), let the new value of x*ijbe x*ij + 6 for each odd cell of the cycle
and let the new value of x*ij be x*ij - 0 for each even cell of the cycle.

Beginning with

Designate xuvbasic, qu nonbasic, and return to Instruction 2.
©.0 ALGORITHMS FOR FINDING A BASIC DUAL FEASIBLE SOLUTION

No general procedure exists for obtaining & starting primal basic feasible

solution for the capacitated transportation problem or for the uncapacitated
transportation problem when some of the cells are blocked out (inadmissible).
Thus, when solving such problems using a primal simplex approach, an artificial
starting basis usually must be employed. One of the major advantages of this
algorithm is that it is always possible to find a starting basic feasible
solution for the dual of such problems. Furthermore, this dual start pro-
cedure provides & basic dual feasible solution for a network if the network

is rewritten as an equivalent transportation problem.

To the best of the authors' kuowledge, no other algorithms which have
employed the dual method [2,3,7] or related "primal-dual" algorithms [13,14,15]
exploit the topological structure of the dual to a transportation problem to
provide a dual feasible start.

The starting method we propose may be described very simply as follows:

1. To start, set R1 = 0. Create the set P = (1].

2. Let T be the set of all admissible cells in the transportation problem
(i.e., T contains all the unblocked cells in the transporiation problem.). Set
Kj = ¢ for all (1,j)eT. Create the set Q = {j: Kj =cy for all (1,3j)eT} and
the set B = {(1,3): KJ = ¢ for 811 (1,J)eT}.

3. Letq, = {(j: jeQ and (i,j)eT)}. For each ieM-P such that Q; is non-
- K., = Min (cij - Kj]’ and set

JeQ

empty, identify an index j*eQi for which cij*

Ry = Cjyu = Kyu» P=PU (i), and B = B y {(4,3%)).
L, Let Pj = {i: 1ieP and (i,j)eT). For each jeN-Q such that P is nonempty,
identify an index i* for which ¢, - Ry, = Min [cij - R, ) and set Ky = cyuy = Rya,

ieP.
J

@ =QU (i) and B = By ((i*,j)}.
5. Continue executing Instructions 3 and 4 until M = P and N = Q.
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Lemma:

When Instructions 1 - 5 are completed, the cells in B form a basis and
the multipliers Ry and Kj defined above satisfy the following properties:

1. R+ KJ. = ¢y for all (i,j) € B.

2. Ry + Kj - Cy; =0 for all (i,j) ¢ T.

Proof:

The method will continue to execute Instructions 3 and 4 until P = M and
Q = N provided that Qi and Pj are not both empty at some iteration. Assume,
however, that both Qi and Pj are empty at some iteration, then the problem has
no vasic solution except by using an inadmissible cell. This follows by noting
that the stated conditions imply that the problem's admissible cells are all
found among those cells (i,j) for ie¢P and jeQ or for which ieM-P and jeN-Q
and hence there is no connected set of admissible cells that spans all rows
and columns. Thus assuming that the transportation problem is connected, the
algorithm will continue to execute until P = M and Q = N.

When the algorithm stops, B contains m+n-1 cells since one new cell is
added to B each time an Ri or & Kj is determined except for Rl' The cells
of B clearly span all the rows and columns. Further, the cells in B contain
no cycles. To verify this, assume the contrary and let (r,s) be the first
cell added to B which creates a cycle with the previous cells. Then there
must be a cell (r,j)cB and a cell (i,s)eB. But this is impossible when (r,s)
is added, since a1l cells (i,j)eB satisfy icP and jeQ, whereas to augment B
with the cell (r,s) either reM-P (Step 3) or seN-Q (Step 4). Thus B forms a
basis.

Finally, the relations 1 and 2 are in immediate consequence of the
definition of the Ri and Kj velues. Thus, the proof of the lemma is
complete.

[We remark that the foregoing proof also justifies & more flexible
version of the dual starting method in which Step 2 is applied to only a
single cell (1,j)eT, and Steps 3 and L are executed in any desired sequence,
selecting only one index i or j in these steps in any single execution. Of

course, the method can also begin with a row index other than i = 1.}

A



From relations 1 and 2, the lemma implies that a solution obtained by setting
the flow of each nonbasic cell equal to its lower bound Lij and each basic cell
equal to the unique flow specified by the basis (once the nonbasic cells have
teen set) will yield a basic dual feasible solution. Furthermore, the lemma
implies that such a basic dual feasible solution may be obtained for any capa-
citated transportation problem as long as it is connected.

To illustrate the algorithm, consider the uncapacitated transportation
problem in Tableau 1. The numbers in the upper left hand corner of each cell
indicate the cost of that cell. (If the cell is blocked out, it is assigned a
cost of M.)

K1=1K2=-hK3=-lKh=5

=
*

2

10

—

=
"
1
=

& - [~

no x| 5] 8 | x M

Rh =9 1D 1C'> 8 12

12 8 8 8
Tableau 1

) The Ri and K'j values indicated alongside the tableau are determined by
instructions 1 - 5. The cells with an asterisk (*) in the upper right hand
corner are the basic cells. The circled numbers in these cells indicate the
unique shipping amounts specified by the basis.

This example can be further used to illustrate the fact that emploving the
usual techniques for obtaining a starting basic primal feasible solution may yield

an artificial start.
In particular, applying the northwest corner rule and the Vogel's

Approximation method, [30], respectively, to the transportation problem in
Tablear 1 gives the artificial bases of Tableaus 2 and 3 below. (The

circled entries indicate the shipping amounts.)
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Tableau 3

(.0 CODE DEVELOPMENT AND COMPUTATIONAL COMPARISON

(.1 OVERVIEW

This section presents a computational comparison of a code based on the

above developments with two widely used out-of-kilter production codes and a
state of the art large scale LP code, OPHELIE/LP. We also examine the effect
o problem density on solution time, where densit; is equal to the number of
arcs (cells) in the problem divided by the number of total possible arcs.
(The interest in density is stimulated by the fact that large "real world"
transportation problems are quite sparse.)

The two out-of-kilter codes which we tested are those of SHARE and
i;ociter. The SHARE code was written by R.J. (Clasen of the RAND Corporation
and is available for general distributiou [8,29). The Boeinrs code, which
was obtained through Chris Witzgall, was developed al the Boeing research
latoretories. Hoth of these codes and the dual rode arc in-core codes:

i.e., the program and all of the problem data simultaneously reside in

11



Tast-access memory. All three codes are written ir FORTRAN and none of
tiem have been tuned (optimized) for a particular compiler. All of the
codes were run on the CDC 600 (which has a maximum memor: of 130,000
words) at the University of Texas Computation Center using the RUN compiler.
The computer Jjobs were executed during periods when the machine load was
approximately the same and all solution times are exclusive of input and
output; i.e., the total time spent solving the problem was recorded by
callirg a Real Time Clock on starting to solve the problem and again when
the solution was obtained.

The general simplex linear programming computer code employed in the
study was Control Nata's OPHELIE/LP code. OPHELIE/LP is a subsystem of
the OPHELIE 11 Mathematical Programming System which is programmed to exploit
the characteristics of the CDC 6600 computer.

To guarantee a comprehensive comparison of the procedures under
analysis, the transportation problems used in the study varied between .%o
percent and 90 percent dense and varied in size from 10 x 10 to 500 x 500
(origins x destinations). A total of €9 different uncapacitated transpor-
tation problems were examined, all of which were randomly generated using
a uuiform probability distribution. The total supply of each m x m trans-
portation protlem was set equal to 1000 m and the supply and demand amounts
were picked using a uniform probability distribution between O and 2000.
The only other restrictions placed on the problems consisted of requiring
the number of variables to be less than or equal to 10,000 and requiring

the cost coefficients to lie between 1 and 100.

(.2 DOUBLE PRICING DUAL CODL DEVELOPMENT
The computer code embodying the ideas of the preceding section was
written in FORTRAN IV and tested on a CDC 6600 with a maximum memory of

130,000 words. To solve a problem with m origins, n destinations, and

r admissible cells (without exploiting the word size of the machine) this
in-core code requires 3r + 19m + 17n + 20,000 words. It would have been
possible by exploiting the fact that the costs are integer-valued, to store
more than one cost coefficient per word and in this manner solve much larger

provlems. ilowever, our purpose was to develop a code whose capabilities did




not depend on the unigue characteristics of a particular computer (e.g., word
size, etc.). To permit the solution of large problems we organized the code
to utilize a "packing" scheme which stores only the "real” costs of the
transportation matrix (i.e., only the costs of the admissible cells). Thus
for a 200 x 200 problem, with 10 percent density, this approach stores only
4,000 of the 40,000 elements stored by standard schemes. The more economical
storage scheme incurs a time disadvantage in packing and uapacking cost coef-
ficients, but materially reduces the number of updated costs that have to
be computed for low density problems in stép 3 of section 4.

The program consists of & main program and fifteen subroutines, and
may be conceptually depicted as in boxes 1 - 5 in Figure 1. Subdividing
the program into many different subroutines made it possible to test
numerous variations without extensive recoding. However, this subdivision
inevitably slowed the code somewhat by requiring the computer to process
subroutine calls and returns rather than jump instructions.

1. START
Find a basic dual feasible solution to the problem
and the row and column (node potential)

values. Determine the augmented predeces-

sor lists for th ing basgis,

2. OPTIMALITY

Check for & variable that violates one of
its bounds. If none exists, stop. Other-
wise pick a basic variable to leave the

basis.
e ¥
3. NEWARC
Apply the double pricing procedure and sim-
Pivot ultaneously calculate the )\s: and 15 values.
Process Determine the incoming nonbasic variable.
e ———— 4[
. LOOP

Find the basis equivalent path (stepping stone
path) asso~iated with the incoming nonbasic
variable aud alter the flow values along this loop.

5. UPDATE
Update the augmented predecessor lists and the
node potential values for the new basis.

Figure 1 - Flow Diagram for the Dual Transportation Code

13



“he total time spert in each of the boxes 1 - © was recorded vy calling
a Real Time clock upon entering and leaving each of these functions. A
coont was also made of the total rnumber of pivots performed. 1In Tables
1 anéd 2, we report median values for the total solution time, the start
t.me gpent in boxes 2 - 5), and the average pivot time (total pivot time
divided b the number of pivots). In addition, Table 1 contains the total
time spent finding the non-basic arc to enter the basis (total time spent
ir box 3) and Table 2 contains the range of solution times.

In developing the code only the dual start procedure developed in
Section © was tested. (Subsequent to our original development of this dual
start procedure, we developed other dual start procedures which appear in
(17].)

Three different criteria were tested for picking the basic variable
to leave the basis. These criteria were the {irst negative criterion,
modified first negative criterion, and most negative criterion. The rele-
vant tradeofi:s for the basis change criteria involve the time consumed in
searching for the variables to enter and leave the basis versus the number
of pivots required to obtain an optimal solution (time per pivot versus
total number of pivots).

The most negative criterion examines each basic variable and picks
that variable to leave the basis which violates its (upper or lower) bound
b the largest amount.

The modified first negative criterion scans the rows (origin nodes) of
the transportation tableau until it encounters the first row containing
a basic variable which violates a bound, and then selects the variable in
this row with the greatest violation. The search is then resumed on the
next pivot in the row following the row of the last pivot.

The f'irst negative criterion cuccessively scans the basic varielles
until it encounters the first variable which violates its bounds. 'Uhis
variatle is then selected to leave the basis. The search is reswued on the

rext pivot at the basic variable following the one of the last pivot.

ime time spent in box 1), the number of pivots, the total pivot time (total

— -~
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DENSITY
.010
.013
.017
.020
.023

.010
.013
.017
.020
.023

.010
.013
017
.020
.023

.03
.04

.03

.03

TABLE 1

Total Solution Time Relative to Basis (nange Criterva
for 250 x 250 anc 500 x 500 Transportation Problems

250 x 250 Transportation Problems

MOST NEGATIVE CRITERION

Solution Start Pivot No. of
Time Time Time Pivots
18.604 1.451 17.153 410
45.624 1.853 4.7 900
52.781 1.870 51.911 975
60.575 1.332 59.243 583
66.401 1.628 64.773 992

MOOIFIED FIRST NEGATIVE CRITERION

18.315 1.421 16.894 461
38.499 1.812 36.667 861
40.690 1.84) 38.849 354
43.184 1.429 41,755 818
59.865 1.719 58.146 1053
FIRST NEGATIVE CRITERION
20.671 1.425 19.246 595
22.889 1.843 22.046 852
31.31 1.845 29.466 1005
37.269 1.396 35.873 1074
35.872 1.675 34.197 907
500 x 500 Transportation Problems
MOST NEGATIVE CRITERION
151.743 3.013 147.730 1741
175.108 3.794 171.314 1866
MODIFIED FIRST NEGATIVE CRITERION
142,288 2.916 139.372 2126
155.707 3.860 151.847 2147
FIRST NEGATIVE CRITERION
107.59% 2.944 104.655 2253
111.905 3.927 107.978 2188

*Time to find the new arc entering the basis.

/{’”‘/

NEWARC*
8.580
28.792
30.369
37.557
43.631

8.745
20.787
23.460
26.852
40.163

12.358
15.473
21.145
26.924
26.775

70.314
86.636

718.500
85.058

13.477
77.297

Time/
Pivot

.042
.050
.053
.060

065

.037
.043
.045
.08
.055

.032
.026
.029
.033
.038

.085
.082

.066
.092

.049

g



Table 1 contains the results of testing these criteria on the 250 x 250
and 2500 x 500 transportation probtlems. Not all the 500 x 500 transportation
problems were solved due to the fact that cur results strongly indicated
that the first negative criterion was best for this problem size. This was
cuite surprising since similar tests for the primal transportation algorithm

[10,20,33] have shown the modified first negative criterion to be preferred.

Table 1 shows that more pivots are required on the 500 x 500 problems
as the simplicity of the criteria increases. This is not invariably the
case for the 250 x 250 problems. For the .013 dense, 250 x 2°0 problem
the number of pivots is larger for the most negative and modified rirst
negative criteria than for the first negative criterion. Specifically,
the superiority of the first negative criterion strictly improves as
densgity increases. This seems somewhat peculiar since a change in aensity
does not affect the number of basic variables. A partial explanation of
this result is provided by studying the "NEWARC" column. More precisely,
observe that the "NEWARC" times are much larger for the most negative and
modified first negative criteria than for the first negative criteria.

This indicates that the basic variable picked by the former criteria have
significantly more npegative )‘1* values assc~iated with it than does
the besic variavle picked by the htter criterion. This conclusion is occasioned

the fact that the updated costs associated with non-regative 1 . values
do not have to be calculated. (Recall these problems are u"capaci‘.ated.) In
addition, the minimization of the relevaant up dated costs is over a smaller set. All
in all this reflects an interesting topological property of the basic arcs

NEWARC /number of pivots).

Primarily Table 1 indicates that the most negative and modified first
negative criteria have little to offer by comparison with the first negative
criterion since they require more search time to find the basic variable to
leave the basis, more computation to determine the non-basic variable to enter
the basis, and they do not substantially reduce the number of pivots.

Table 1 indicates that ac problem size and/or density increases "NEW
Lime grows disproporiionately large. For this reason the dual method is not
an effective method for solving large problems.

¥



6.3 COMPUTATION COMPARISOXN

The results of Table 2 demonstrate that the graph structure of the
transportation problem does merit the use of special purpose algorithms.

The dual code and the out-of-kilter codes are at least 20 times faster than
the OPHELIE/LP general simplex linear programming computer code.

The median times for the OPHELIE/LF code were derived after first
conducting a number of trial runs to determine the best procedure for
selecting the next incoming variable. The trial runs indicated that 30
variables should be considered at a *ime and, of thege, the variable asso-
ciated with most negative updated cost should be selected.

The data in Table 2 also indicate that neither the SHARE code nor the
Bouving code dominates the other with respect to solution time. The solution
times of the Boeing code, however, appear to be more erratic, with a somewhat
troader range. The solution times of the dual code also appear to be more
erratic than the SHARE times. This characteristic o' the dual code and the
moeing code reflects their dependence on density. Reduced density, as might
be expected, leads to definite improvements in computation times.

The most ‘mportant finding (and most disappointing from the standpoint
of the develcpments of Sections 3 and &) is the indication in Table 2 that
the dual code falls behind the others for problems of size 2°0 x 2°0 and
larger, although it is decidedly faster than the out-of-kilter codes on
small to moderate size problems (up through 150 x 150). The primary cause
of this degeneration of superiority is the large amount of time recuired
to find the variable to enter the basis. Since our modification of the dual
algorithm was in fact designed to minimize these calculations, we conclude
that the dual method is not a competitive "dead start” procedure for solving
large problems - i.e., its potential value for large provlems lies in those
situations in which an extremely good dual starting solution is available.
Further, it is unlikely that any minor modifications which are derived in
the future will alter this conclusion. This conclusion is tased upon several
factors:

16
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1. Srinivasan and Thompson [33] found that the augment=d predecessor
index method [19) was twice as fast as any of the other methods for traversing
and updating a spanning tree. Thus the procedures for pricing-out, updating
node potentials, and locating basis equivalence paths in our code are based
upon what is known to be the most effective method for performing these
operations.

2. The provlems used in this study overlap the problems used in [20].
This study [20] discloses that a primal transportation algorithm (embodying
the augmented predecessor index method) coupled with the Row Minimum start
rule and a "modified row first negative evaluator” rule is at least 100 times
faster than OPHELIE. Further this method's median solution time for 100 x 100
transportation problems on a CDC €600 computer was 1.9 seconds and 17 seconds
on 1000 x 1000 problems. Thus, the dual transportation method would have to
e improved approximately 7-foid on the 100 x 100 problems to match the
performance of the primal code. Pursuing the relationship between the com-
putational results of [20] and this study, the following remarks apply:

a) The primal approach is less sensitive to densit, than the dual and

out-of-kilter codes.

b) The dual start of Section 5 is guite efficient. It requires only
one-tenth of the time that the Vogel Approximation Method recuires
to obtain an initial solution and reguires only half as many pivots
to reach optimality.

¢) The inferiority of the dual method to the primal method lies in the
drastic u.fference in the time per pivot of the two methods. The
dual method's time per pivot is 5-f times larger than that required
by the primal.

3. The problems used in this study also overlap the problems beins used
in [k]. The preliminary results of that study indicate that an improved
vercion of the out-of-kilter method coupled with u state-oi-the-art computer
implementation is from 4 to 12 times faster than SHARE. Thus from this partial
~omparison of three state-of-the-art implementations of the three fundamental
solution approaches to solving transportation probtlems it seems apparent that
the cual approach is running somewhat behind the others. Interestingly, as

7



though in anticipation of this, the original developers of the dual transpor-
tation approach [2,3,7], suggested that it be used chiefly for post-optimality
type analysis or in application to small problems. (For example, it might

be & good algorithm to use in conjunction with certain cutting plane or
implicit inumeration procedures [31] that restart from previously optimal
bases.)
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Footnotes

1. A precise statement of this method does not seem to exist in the liter-
ature except in the treatment of Wagner [34] which utilizes an explicit
replacement of & bounded variable by its associated slack. However, the
statement given here is easily inferred from standard considerations.

In particular, see the excellent discussions of such "generalizations"
and "variations" in Jewell [22].
2. This code was developed by F. Glover, D. Karney, and D. Klingman.
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